Search results

Search for "molecular vibration" in Full Text gives 10 result(s) in Beilstein Journal of Nanotechnology.

Scanning tunneling microscopy and spectroscopy of rubrene on clean and graphene-covered metal surfaces

  • Karl Rothe,
  • Alexander Mehler,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2020, 11, 1157–1167, doi:10.3762/bjnano.11.100

Graphical Abstract
  • previously determined on a theoretical basis to exhibit a particularly strong Holstein coupling to the HOMO of C42H28 embedded in a molecular crystal [42]. Generally speaking, the Holstein coupling describes the local interaction of a charge carrier with a molecular vibration [40] and may therefore be
PDF
Album
Full Research Paper
Published 03 Aug 2020

Synthesis and enhanced photocatalytic performance of 0D/2D CuO/tourmaline composite photocatalysts

  • Changqiang Yu,
  • Min Wen,
  • Zhen Tong,
  • Shuhua Li,
  • Yanhong Yin,
  • Xianbin Liu,
  • Yesheng Li,
  • Tongxiang Liang,
  • Ziping Wu and
  • Dionysios D. Dionysiou

Beilstein J. Nanotechnol. 2020, 11, 407–416, doi:10.3762/bjnano.11.31

Graphical Abstract
  • molecular vibration characterization revealed that CuO chemically interacted with tourmaline via Si–O–Cu bonds. The specific surface area of the CuO/tourmaline composite (23.60 m2 g−1) was larger than that of the pristine CuO sample (3.41 m2 g−1). The CuO/tourmaline composite exhibited excellent
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2020

Molecular attachment to a microscope tip: inelastic tunneling, Kondo screening, and thermopower

  • Rouzhaji Tuerhong,
  • Mauro Boero and
  • Jean-Pierre Bucher

Beilstein J. Nanotechnol. 2019, 10, 1243–1250, doi:10.3762/bjnano.10.124

Graphical Abstract
  • typical signature for an inelastic electron tunneling process involving the excitation of molecular vibration modes [5][22]. The IETS features are asymmetric in intensity with respect to the Fermi energy and will be discussed shortly at the end of this section. There are significant changes in the dI/dV
  • tunneling through excitation of molecular vibration modes. Parameter-dependent transport in a molecular junction In order to gain additional information about the kinetics of carriers not contained in the current–voltage characteristics we want to evaluate the impact of the zero-bias peak on the thermopower
PDF
Album
Full Research Paper
Published 19 Jun 2019

Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation

  • Ji-Shu Liu,
  • Xiao-Hui Li,
  • Abdul Qyyum,
  • Yi-Xuan Guo,
  • Tong Chai,
  • Hua Xu and
  • Jie Jiang

Beilstein J. Nanotechnol. 2019, 10, 1065–1072, doi:10.3762/bjnano.10.107

Graphical Abstract
  • . Conclusion In summary, FONPs prepared via a sol–hydrothermal method were successfully used as a SA to construct a high-performance fiber laser. The surface properties, molecular vibration, structure and composition of the FONPs were systemically studied using SEM, TEM, HR-TEM, EDS, Raman spectra, XRD and UV
PDF
Album
Full Research Paper
Published 20 May 2019

Electronic conduction during the formation stages of a single-molecule junction

  • Atindra Nath Pal,
  • Tal Klein,
  • Ayelet Vilan and
  • Oren Tal

Beilstein J. Nanotechnol. 2018, 9, 1471–1477, doi:10.3762/bjnano.9.138

Graphical Abstract
  • junction; molecular vibration; quantum interference; shot noise; Introduction Single-molecule junctions serve as a versatile atomic-scale laboratory for quantum electronic transport [1][2]. The formation of such molecular junctions, where a molecule is suspended as a bridge between two metallic electrodes
  • spectroscopy [11][12][13][14] can offer valuable information about the structure of the combined metallic and molecular junctions. When an applied voltage (V) across a molecular junction exceeds the energy (in eV) of a certain molecular vibration mode, some of the transmitted electrons lose energy to excite
  • junctions [12]). Focusing on the examined cases, the steps down in Figure 2a are expected for higher conductance than 0.5 G0 as indeed observed. In contrast, the steps up in Figure 2c imply the interaction of a molecular vibration mode with a secondary conduction channel across a molecular junction with
PDF
Album
Full Research Paper
Published 17 May 2018

Probing the local environment of a single OPE3 molecule using inelastic tunneling electron spectroscopy

  • Riccardo Frisenda,
  • Mickael L. Perrin and
  • Herre S. J. van der Zant

Beilstein J. Nanotechnol. 2015, 6, 2477–2484, doi:10.3762/bjnano.6.257

Graphical Abstract
  • tunneling spectroscopy (IETS) in a single-molecule junction. Charge transport happens through the tail of the Lorentzian broadened occupied molecular level depicted. The wiggly red line represents a molecular vibration excited after an inelastic scattering event (shown also in the right panel). (b) IETS
PDF
Album
Supp Info
Full Research Paper
Published 24 Dec 2015

Thermoelectricity in molecular junctions with harmonic and anharmonic modes

  • Bijay Kumar Agarwalla,
  • Jian-Hua Jiang and
  • Dvira Segal

Beilstein J. Nanotechnol. 2015, 6, 2129–2139, doi:10.3762/bjnano.6.218

Graphical Abstract
  • to represent a physical anharmonic molecular vibration. In this case, an analytical form for the CGF is missing, but one could still derive the charge current directly from a quantum master equation formalism, to obtain the performance of the system. We expect that with a genuine anharmonic potential
PDF
Album
Full Research Paper
Published 11 Nov 2015

Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

  • Dan Lis and
  • Francesca Cecchet

Beilstein J. Nanotechnol. 2014, 5, 2275–2292, doi:10.3762/bjnano.5.237

Graphical Abstract
  • active vibrational transition, it drives all resonant oscillators in the probed volume to vibrate at that frequency. If the molecular vibration is Raman active as well, the infrared transition further interacts coherently with the visible field to drive the resonant oscillators at the sum-frequency ωSFG
  • at the beat frequency ωp − ωs (Figure 2e). If this frequency matches a Raman active molecular vibration, the Stokes emission interacts coherently with the pump beam to drive the resonant oscillators at the anti-Stokes frequency ωas = 2ωp − ωs. This leads to the emission of a CARS photon at the anti
PDF
Album
Review
Published 28 Nov 2014

Probing the plasmonic near-field by one- and two-photon excited surface enhanced Raman scattering

  • Katrin Kneipp and
  • Harald Kneipp

Beilstein J. Nanotechnol. 2013, 4, 834–842, doi:10.3762/bjnano.4.94

Graphical Abstract
  • Figure 2d, the product of cross section and vibrational lifetime in Equations 1 must be on the order of 10−27 cm2·s. With vibrational lifetimes on the order of 10 ps [40], effective cross sections that can account for Raman pumping of a molecular vibration have to be at least on the order of 10−16 cm2
PDF
Album
Full Research Paper
Published 02 Dec 2013

Interaction of spin and vibrations in transport through single-molecule magnets

  • Falk May,
  • Maarten R. Wegewijs and
  • Walter Hofstetter

Beilstein J. Nanotechnol. 2011, 2, 693–698, doi:10.3762/bjnano.2.75

Graphical Abstract
  • coupling to a molecular vibration suppresses the interaction of the SMM with the electrodes due to Franck–Condon overlap, effectively reducing J. However, for an isotropic spin of 1/2 it was shown that the effective spin-exchange amplitudes for processes that do not change the vibrational quantum number
PDF
Album
Full Research Paper
Published 18 Oct 2011
Other Beilstein-Institut Open Science Activities